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A little about me

● Postdoc at University of Glasgow
○ Previously: PhD University of Glasgow
○ Member of GEO / LIGO

● Research foci: 
○ statistical techniques for approximating GW waveforms
○ multimessenger astrophysics with gravitational-waves
○ gravitational-wave burst search sensitivity measurement



A little about the University of Glasgow

● 4th-oldest university in 
English-speaking world
○ Founded 1451
○ 2nd-oldest in Scotland
○ Centre of the Scottish Enlightenment





Institute for Gravitational Research
● Founded in 2000 by Prof Sir James Hough

○ ~70 members

● Research foci
○ Gravitational-wave detectors

■ Mirror suspensions
■ Mirror coatings
■ Interferometer R&D

○ Gravitational-wave data analysis
■ Bayesian & machine learning techniques
■ Continuous wave [GW pulsar] sources (Woan, Bayley, [Pitkin])
■ Compact binaries (Veitch, Williams, Messenger, Gabbard, Williams)
■ Bursts (Heng, Williams, McGinn)
■ GW cosmology (Hendry, Messenger, Gray)
■ Multimessenger (Heng, Williams, Hayes, Datrier)

○ Miniaturisation of gravimeters



Outline

1. Black hole waveforms from 
Numerical Relativity

2. An introduction to Gaussian 
Process Regression

3. The Heron waveform model

4. Using Conditional Variational 
Autoencoders for Bayesian 
Inference



Binary black hole waveforms
Adventures in General Relativity



A need for waveforms

● Gravitational wave searches 
rely on matched filtering where 
template waveforms generated 
from theoretical models are 
compared to noisy detector data

● The accuracy of the waveform 
directly affects the 
performance of the search

Important for

● Signal detection in noisy 
data-streams

● GW parameter estimation

● Testing general relativity in 
strong-field scenarios



Solving the Einstein Field Equations 
● Studying compact binaries using 

GWs relies on solving the 
relativistic 2-body problem

● In Newtonian gravity the 2-body 
has solutions in the form of 
Keplerian orbits

● Weak-field scenarios in GR can 
be approximated through 
post-Newtonian expansion
○ E.g. analysis of the precession 

of the orbit of Mercury

● Strong-field is analytically 
intractable.



Binary black hole systems
● Compact system of two 

black-holes
● Orbit inspirals due to energy 

lost as GWs
● Waveform affected by spin-spin 

and spin-orbit effects



Numerical relativity
● Numerical solution of the EFEs 

became possible in mid-2000s.

● Numerical relativity 
simulations produce most 
precise waveforms available.

● NR waveforms are very slow to 
produce: can take weeks to run, 
and cost many thousands of 
dollars.



Numerical relativity: Catalogues
● Largest source of NR waveforms is the SXS Catalogue

○ https://data.black-holes.org/waveforms/
○ arXiv:1904.04831

● Catalogues also available from
○ Georgia Tech: arXiv: 1605.03204
○ RIT: 1703.03423

https://data.black-holes.org/waveforms/


Approximant models
Two major approaches to approximating the waveform:

Phenomenological fitting
IMRPhenom-family waveforms

● Use analytical fits to the 
three stages of the waveform
○ Inspiral (post-Newtonian)
○ Merger
○ Ringdown (Lorentzian decay)

● Fast
● Less accurate

Effective one-body approximation
(S)EOBNR-family waveforms

● Use simplified physics
● Quite accurate
● (Very) Slow

Both calibrated against NR-derived waveforms.



Statistical function modelling



Random walks
Stochastic process

y(t+Δt) = y(t) + Δy

Δy = Normal(0,Δt)



Gaussian process

data = {(x, y)i, i ∈ 1,…,n} 

yi(xi) = ƒ(xi) + εi

εi ~ Normal(0,σ
2)



Gaussian process

p(ƒ|x1,x2,…,xn) = NormalN(0,K)

Ki,j = k(xi,xj;λ) 



Gaussian process

p(ƒ,ƒ*|y) ∝ p(ƒ,ƒ*) p(y|ƒ) 

Prior likelihood

Posterior

ƒ = ƒ(x),

ƒ* = ƒ(x*)



Gaussian process
Stochastic process

p(ƒ*|y) = ∫ p(ƒ,ƒ*|y) dƒ
 

∝ ∫ p(ƒ,ƒ*) p(y|ƒ) dƒ

∝ ∫ NormalN(0,K
+) Normal(ƒ, σ2I) dƒ



Gaussian process
The Gaussian process prior

 [  ] 

Kx,x Kx,xʹ
Kxʹ,x Kxʹ,xʹ

K+ =p(ƒ,ƒ*) = Normal(0, K
+)



Gaussian process
Covariance functions

kSE(xi,xj; λ) = exp(½|xi,xj|·λ
-2)

Ki,j = k(xi,xj;λ) 





Gaussian process
Marginalised posterior

μ = Kxʹ,x (Kx,x + σ
2I)-1 y

Σ = Kxʹ,xʹ - Kx,xʹ (Kx,x + σ
2I)-1 Kx,xʹ

p(ƒ*|y) = Normal(μ,Σ)

p(ƒ,ƒ*) = Normal(0, K
+)

 [  ] 

Kx,x Kx,xʹ
Kxʹ,x Kxʹ,xʹ

K+ =





Gaussian process
Covariance functions revisited







Gaussian process
Covariance functions - learning hyperparameters

kSE(xi,xj; λ) = exp(½|xi,xj|·λ
-2)

● Hyperparameters (e.g. λ)  give us flexibility in 
specifying the form of the covariance function

● We can determine optimal values for these by 
maximising the evidence of the data-conditioned 
Gaussian process e.g. using Gradient descent 
(empirical Bayesian approach) or MCMC.



Heron
A GPR and NR-driven BBH model

왜가리과



Design goals
● Create a waveform model which 

maintains a measure of output 
uncertainty
○ Gaussian process regression an 

ideal approach
○ Important for use in Bayesian 

inference e.g. for LIGO 
parameter estimation

● Create a waveform model using 
NR waveforms directly
○ No physical approximations
○ Minimal assumptions about 

functional form of the waveform



Model design
● Two Gaussian processes

○ One to model h+ polarisation
○ One to model hx polarisation

● Assumption that the waveforms 
will be smooth
○ Important for choice of 

covariance function

● Covariance function:

8-dimensional 
Squared-exponential kernel

● Trained using ADAM and 
mini-batches

● Employs a matrix inversion 
approximation to cope with 
memory requirements



Some waveforms from the GT catalogue



Training data

Waveforms span the 
7-dimensional parameter 
space, but regions of 
the parameter space 
often very sparsely 
sampled



Training data



Non-spinning waveform (h+)

mass-ratio 1.0

Spin 1x 0

Spin 1y 0

Spin 1z 0

Spin 2x 0

Spin 2y 0

Spin 2z 0



Aligned-spin waveform (h+)

mass-ratio 0.5

Spin 1x 0

Spin 1y 0

Spin 1z 0.1

Spin 2x 0

Spin 2y 0

Spin 2z 0.25



“Leave-one-out” tests

Testing

1. Choose waveform from GT 
catalogue

2. Remove this waveform from 
the Heron training set

3. Retrain Heron model with 
one waveform removed

4. Calculate the mismatch 
between the Heron waveform 
and the GT waveform

Repeat for all GT waveforms



Comparison with SXS

Testing

1. Choose waveform from SXS 
catalogue

2. Generate corresponding 
waveform from Heron GPR 
model

3. Calculate the mismatch 
between the two waveforms

Repeat for all SXS waveforms



Testing
Are Heron waveforms good 
enough?
● Waveform accuracy becomes more 

important as SNR increases

○ At low SNR noise exceeds 
uncertainty introduced by 
waveform inaccuracies
 

⍴eff = (2[1-ℳ])
-0.5

● Defines the SNR at which 

waveform systematics 

exceed uncertainty from 

noise



Roadmap
● Much work still to be done

○ Speed improvements

○ Larger training set i.e. 
more NR waveforms

○ Improved handling of 
precession effects

○ Produce longer waveforms - 
more inspiral cycles

○ Interface with parameter 
estimation code e.g. bilby

Current proof-of-concept version 
described in 

arXiv:1903.09204

Code available at

https://github.com/transientlunatic/heron

Please forgive the currently 
sparse documentation: I’m working 
on it!

https://github.com/transientlunatic/heron


Conclusions
The good, the bad, and the ugly

The bad

● Quite slow, gets slower as more 
data added

The ugly

● Sparse training data available 
(though this is getting better)

● Much work required to integrate 
in existing Bayesian inference 
pipelines

The good

● Provides data-driven model with 
no assumptions about underlying 
physics

● Provides waveform uncertainties 
throughout parameter space



Variational autoencoders
Accelerating Bayesian inference

with VItamin



Autoencoders

● Two networks

○ One learns mapping from 
data-space to (latent) feature 
space

○ One learns mapping from 
feature space to data space

● Useful for compression & 
dimensionality reduction



Conditional variational 
autoencoders

● Two networks

○ One learns mapping from 
data-space to a distribution 
in feature space

○ One learns mapping from points 
feature space to data space



VItamin
● Project to develop a network 

which can map noisy data vector 
to a distribution in feature 
space

● Goal to produce a fast way to 
approximate Bayesian posteriors

● “Estimating Bayesian parameter 
estimation”

See Gabbard+2019

“Bayesian parameter estimation 
using conditional variational 
autoencoders for gravitational-wave 
astronomy”

arxiv:1909.06296



How VItamin works
● Two encoder networks are trained

○ One sees the noisy waveforms and also the true 
parameters

○ One sees only the noisy waveform

● The encoders are trained to minimise the KL 
divergence of the distributions they produce

● Samples are drawn from the distribution from the 
all-seeing network

● Discriminator is trained by minimising the 
difference between discriminator output and the 
true parameters



Comparing nested sampling to VItamin



VItamin : speed improvements



VItamin Conclusions
Opportunities

● Potential for 7 orders of 
magnitude speed-up compared to 
conventional Bayesian methods

Challenges

● Need to scale-up to all 
intrinsic and extrinsic 
parameters

● Still problems emulating 
multimodal posteriors

● Working with non-Gaussian noise 
realisations



Any questions?
📧 
daniel.williams@glasgow.ac.uk
🐦 @daniel_williams
🐦 @UofGravity

mailto:daniel.williams@glasgow.ac.uk

